Thursday, December 30, 2010

Mathematical Formula's (CSAT)

  1. (a + b)(a – b) = a2 – b2
  2. (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
  3. (a ± b)2 = a2 + b2± 2ab
  4. (a + b + c + d)2 = a2 + b2 + c2 + d2 + 2(ab + ac + ad + bc + bd + cd)
  5. (a ± b)3 = a3 ± b3 ± 3ab(a ± b)
  6. (a ± b)(a2 + b2 m ab) = a3 ± b3
  7. (a + b + c)(a2 + b2 + c2 -ab – bc – ca) = a3 + b3 + c3 – 3abc =
  8. 1/2 (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2]
  9. when a + b + c = 0, a3 + b3 + c3 = 3abc
  10. (x + a)(x + b) (x + c) = x3 + (a + b + c) x2 + (ab + bc + ac)x + abc
  11. (x – a)(x – b) (x – c) = x3 – (a + b + c) x2 + (ab + bc + ac)x – abc
  12. a4 + a2b2 + b4 = (a2 + ab + b2)( a2 – ab + b2)
  13. a4 + b4 = (a2 – √2ab + b2)( a2 + √2ab + b2)
  14. an + bn = (a + b) (a n-1 – a n-2 b +  a n-3 b2 – a n-4 b3 +…….. + b n-1)(valid only if n is odd)
  15. an – bn = (a – b) (a n-1 + a n-2 b +  a n-3 b2 + a n-4 b3 +……… + b n-1){were n ϵ N)
  16. (a ± b)2n is always positive while -(a ± b)2n is always negative, for any real values of a and b
  17. (a – b)2n = (b – a)2” and (a – b)2n+1 = – (b – a)2n+1
  18. if α and β are the roots of equation ax2 + bx + c = 0, roots of cx” + bx + a = 0 are 1/α and 1/β. if α and β are the roots of equation ax2 + bx + c = 0, roots of ax2 – bx + c = 0 are -α and -β.
    19.     n(n + l)(2n + 1) is always divisible by 6.
     20.     32n leaves remainder = 1 when divided by 8
     21.     n3 + (n + 1 )3 + (n + 2 )3 is always divisible by 9
     22.     102n + 1 + 1 is always divisible by 11
     23.       n(n2- 1) is always divisible by 6
    24.        n2+ n is always even
    25.        23n-1 is always divisible by 7
     26.       152n-1 +l is always divisible by 16
     27.        n3 + 2n is always divisible by 3
    28.        34n – 4 3n is always divisible by 17
     29.        n! + 1 is not divisible by any number between 2 and n(where n! = n (n – l)(n – 2)(n – 3)…….3.2.1)
      30.        for eg 5! = 5.4.3.2.1 = 120 and similarly 10! = 10.9.8…….2.1= 3628800
      31.         Product of n consecutive numbers is always divisible by n!.
      32.         If n is a positive integer and p is a prime, then np – n is divisible by p.
     33.            |x| = x if x ≥ 0 and |x| = – x if x ≤ 0.
      34.               Minimum value of a2.sec2Ɵ + b2.cosec2Ɵ is (a + b)2; (0° < Ɵ < 90°)for eg. minimum value of 49 sec2Ɵ + 64.cosec2Ɵ is (7 +2 = 225.
      35.         among all shapes with the same perimeter a circle has the largest area.
       36.           if one diagonal of a quadrilateral bisects the other, then it also bisects the quadrilateral.
       37.            sum of all the angles of a convex quadrilateral = (n – 2)180°
       38.           number of diagonals in a convex quadrilateral = 0.5n(n – 3)
        39.          let P, Q are the midpoints of the nonparallel sides BC and AD of a trapezium ABCD.Then,
ΔAPD = ΔCQB.
Enhanced by Zemanta